
Parallel Computing 16 (1990) 183-190 183
North-Holland

Distributed selectsort sorting algorithms
on broadcast communication networks

Jau-Hsiung H U A N G * and Leonard K L E I N R O C K * *

• Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan,
R.O.C.
• * Computer Science Department, University of California, Los Angeles, California, USA

Received 14 May 1990
Revised 16 July 1990

Abstract. In this paper, a distributed selectsort algorithm and a parameterized selectsort algorithm are presented
to be applied on distributed systems for cases when N >> P where N is the number of elements to be sorted and
P is the number of processors in the system. The distributed system considered in this paper uses a broadcasting
channel for communication between processors. We show that the number of messages required for the
parameterized selectsort algorithm is independent of N and is of complexity O(P), which is optimal in a
distributed system with P processors. Furthermore, the amount of communication required in terms of elements
is N + O(P 3) and the computation time complexity is O((N/P)lgN + P21g(N/P)). Hence, when N >/p3, the
computation time complexity is O((N/P)lgN), which is optimal using P processors. In addition, this
parameterized algorithm provides us with a parameter K such that by choosing the value of K allows us to trade
among processing requirement, memory requirement, and communication requirement. It is shown that this
parameterized algorithm can reduce the communication requirements significantly while only slightly increasing
the computation requirements.

Keywords. Broadcast, Communication bit complexity, Communication element complexity, Communication
message complexity, Computation time complexity, Delimiter.

1 Introduction

For algorithms applied on a dis tr ibuted system, the t ime required by the algori thm normal ly
depends on two issues. One issue is the computat ion t ime requi rement and the other is the
communica t ion t ime requirement. In m a n y dis t r ibuted systems, the t ime taken by computa t ion
is much less than the t ime taken by communica t ion ; hence, the c ommun i c a t i on requi rement is
usually accepted as the performance measure of dis t r ibuted algorithms.

Further, the time spent on communica t ion has two major factors. One factor is the time
required to prepare messages for sending and to process messages after receiving. We call this

the message processing t ime. The message processing time includes packetizing a message before
sending and unpacket iz ing a message after receiving and the time spent on error detect ion and
recovery. Another factor is the t ime required in t ransmi t t ing messages. We call this the message

transmission t ime, which is the t ime required for a message to travel across the communica t ion
network. Hence, the message processing time required by an algori thm depends on the n u m b e r
of messages created by the algori thm and the message t ransmiss ion time required by an
algori thm depends on the n u m b e r of bits t ransmit ted by the algorithm. In some systems, the
message processing time is no smaller than the message t ransmiss ion time. Therefore, in
measur ing the communica t ion complexity of an algorithm, we have to look at bo th the message

0167-8191/90/$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

184 J.-H. Huang, L. Kleinrock /Distributedselectsort sorting algorithms

processing time requirement as well as the message transmission time requirement. That is, we
would like to reduce both the number of messages required by the algorithm and the number of
bits required to be transmitted among processors. In other words, if the number of bits required
to be transmitted is the same, the performance of the algorithm will be better if fewer messages
are incurred.

The distributed selectsort sorting algorithm presented in this paper wants to sort N distinct
elements with P processors assuming that these N elements are evenly distributed among all P
processors, i.e. there are N / P elements in each of the processors. We assume there are P
processors and Pi denotes the i th processor. Without loss of generality, we assume all N
elements are distinct in this paper. In cases when there are elements with the same value, we
can append the station number to the element to break the equality. The purpose of this
algorithm is to sort these N elements and to store the result in the P processors. That is, all
elements in each processor are sorted; further, all elements in Pi are smaller than all elements
in Pi+l- Hence, Pp contains the largest N / P elements. Therefore, the sorted N elements are
placed in processors P1 to Pp in an increasing order.

For the rest of the paper, we denote the number of messages required to be transmitted by
an algorithm as the communication message complexity and denote the number of bits required
to be transmitted as the communication bit complexity. As usual, we denote the time required
for computation as the computation time complexity. Further, since the basic entity considered
in this paper is an element, we define communication element complexity as the number of
elements required to be transmitted by the algorithm. Clearly, if there are N elements to be
sorted, each element can be represented by k = lgN bits, then the communication bit complex-
ity is simply k times of the communication element complexity. In this paper, we will use the
communication element complexity as the performance measure instead of using the communi-
cation bit complexity.

There have been many works in distributed sorting algorithms [1-7] among which [1] and [2]
will be briefly described here since they are also applied on a broadcast network. [1] gave an
algorithm which made use of a broadcast communication network to implement a distributed
sorting algorithm. The advantage of their algorithm was that, regardless of the number of
processors used, the algorithm had an average communication element requirement as 23N.
Note that sorting in a broadcasting network requires a communication element requirement of
at least N since every element must be broadcasted at least once in the worst case so that it can
be sent to the processor where it should reside in the final sorted distributed lists. The
disadvantage of this algorithm is that each broadcast message contains only one element.
Hence, this algorithm incurs 3N messages.

[2] gave another distributed sorting algorithm which also made use of a broadcast communi-
cation network using more than one channel. This algorithm achieved higher concurrency by
using multiple communication channels. However, this algorithm had a communication ele-
ment requirement of 4N and required O (N) messages.

For the parameterized selectsort sorting algorithm presented in this paper, the communica-
tion message complexity is O (P) and the communication element requirement is N + O(p3) .
For cases when N >> P, our algorithm requires much less communication requirement than
those in [1] and [2]. Moreover, the computation time complexity is O((N/P)IgN + PZlg(N/P));
hence, when N>~ p3, the computation time complexity is O((N/P)lgN), which is optimal
using P processors.

This paper is organized as follows. In Section 2, we first present a distributed concurrent
selection algorithm. This algorithm is later applied in Section 3 to obtain a distributed
selectsort sorting algorithm where the number of messages sent is much smaller than that in [1]
and [2]. We then modify this algorithm into a parameterized algorithm in Section 4. The
parameter provided in the algorithm allows us to trade among communicat ion requirement,

J.-H. Huang, L. Kleinrock /Distributed selectsort sorting algorithms 185

computation requirement, and memory requirement. It is shown that a slight increase in
computation requirement saves us a lot in communication requirement. The conclusion is
presented in Section 5.

2 The distributed concurrent selection algorithm

We first describe the distributed concurrent selection algorithm. We assume that each
processor contains N / P sorted elements in its local list. This algorithm will select concurrently
P - 1 elements with P - 1 specified rankings. Some similar works are presented in [8-10].
However, our algorithm selects P - 1 elements concurrently.

The approach used in this algorithm is a combination of counting and binary searching. We
first explain how counting is used. If P, wants to find out the overall ranking of its mth locally
ranked element with value X, it broadcasts X to all other processors using the communication
network. Every processor except P; will then find out how many elements in its local list are
smaller than X and will then send this number in a message to P; through the broadcast
network. After receiving all these P - 1 messages, P; adds up all these numbers from these
messages to find out how many elements stored in other processors are smaller than X. It then
adds m to this number to obtain the overall ranking of X.

In the following we show how binary searching is used. If Pi wants to find out whether its
local list contains an element with an overall ranking n, P; first takes its entire local list as the
working list and finds out the overall ranking of the median element in the working list using
the counting method just described. If the overall ranking of the median element is greater thaon
n, then we take the first half of the current working list as the new working list and repeat the
process. Or, if the overall ranking of the median element is smaller than n, then we take the
second half of the current working list as the new working list and repeat the process. This
procedure repeats until either the element with an overall ranking n is found or P; finds out
that its local list does not contain the element with an overall ranking n.

To accomplish the selection in this algorithm to find P - 1 elements with P - 1 specified
rankings concurrently, every processor sends messages in turn according to its station number
until the algorithm finishes. Each message sent contains P (P - 1) elements grouped into P - 1
fields with P elements in each field. We denote these P(P - 1) elements as E H, El2 Eap,
E21 , E22 Ezp E (p _ l) l , E (p _ l) 2 E~p l)p. The first subscript denotes the field num-
ber and the second subscript denotes the ordering of that element in that field. The P elements
in the ith field (1 ~< i ~< P - 1) in each message are used to locate the element with the ith
specified ranking. Since we need to find P - 1 elements with specified rankings concurrently,
we have P - 1 fields in each message.

The content of element Ekj sent by P; may have two different meanings depending on
whether j equals i or not. Element Ek; sent by P; contains an element in P;'s list which P; likes
to find out the ranking of this element among all elements in all processors. P; achieves this
goal using the counting method described above after receiving the following P - 1 messages.
For element Ekj, j ~ i, sent by P;, it contains a number which specifies that how many
elements in P;'s list is smaller than the element Ekj sent by Pj in Pj 's last broadcast. This will
help Pj in finding the overall ranking of E~j broadcast by Pj in its last broadcast.

To find out the overall ranking of element Ek; sent by P;, P; simply adds up all the elements
Ek; in the following (P - 1) broadcast messages sent by Pj(j 4: i) and the ranking of Ek; in P / s
local list. Whenever a processor, say P;, finds that element Ek; has the k th prespecified
ranking, it broadcasts a special message in its next broadcasting. This special message places
the element with the k th pre-specified ranking, which is just found, in Ek~ and a '&' in each

186 J.-H. Huango L Kleinrock /Distributed selectsort sorting algorithms

16 39 13 22
19 69 28 31
61 91 47 43
85 122 115 58
109 181 130 64
202 211 147 67
208 232 151 79
226 247 153 101
244 250 175 107
253 259 187 I24
269 274 199 133
282 289 205 145
286 304 235 160
311 313 241 169
316 326 262 184
322 331 265 191
329 337 271 196
343 341 292 217
347 352 297 223
349 361 301 228
P1 P2 P3 P4

Fig. 1. Input data for Example 1.

e lement Ekj (1 ~<j ~< P , j 4: i) to let all o ther processors know that the e lement Eki is the
e lement with the k th pre-speci f ied rank ing to be found.

Example 1. In this example we show how messages are sent using this a lgor i thm assuming
N = 80 and P = 4. The input da t a is shown in Fig. 1 and we wan t to select the 20th, the 40th,
and the 60th e lements concurrent ly . The messages sent using this a lgor i thm are shown in Fig. 2.
As shown in Fig. 2, we find that 109, 205, and 282 are the e lements to be found.

L e m m a 1. The communication element complexity of the distributed concurrent selection algorithm
is O(p31g(N / P)) . In addition, the communication message complexity is O(P . lg(N / P)).

Proof. We define a run to be that every processor b roadcas t s in turn once; hence, there are P
messages per run. Us ing b ina ry searching, the n u m b e r of runs required to comple te the
a lgor i thm is uppe r b o u n d e d by lg (N/P) . Hence, the total n u m b e r of messages sent has a
complex i ty of O(P. lg(N/P)) . Since each message conta ins P (P - 1) e lements; hence, the to ta l
n u m b e r of e lements sent across the ne twork in Step 2 has a complex i ty of O (P 3. I g (N / P)) . []

Lemma 2. The computation time complexity of the distributed concurrent selection algorithm is
o (e 2- lg2(N / P)).

Proof. Before a message is sent, the value of each e lement has to be de te rmined . F o r P~ to
de te rmine the value of each Eke(1 ~< k ~< P - 1), Pi has to add P n u m b e r together, which has a
c o m p u t a t i o n complex i ty of O (P) . Since there are P - 1 such Ekis, the total c o m p u t a t i o n
complex i ty incur red is O(P2) . F o r Pi to de te rmine Ekj (1 ~< k ~< P - 1 and j ~ i) , Pi has to do
a b ina ry searching, which has a compu ta t i on complex i ty of O(Ig(N/P)) . Since there are
(P - 1) 2 such Ekjs , the to ta l c o m p u t a t i o n complex i ty incurred is O (P 2. lg (N/P)) . Hence, the
c o m p u t a t i o n complex i ty incur red by a message is O (P 2. lg (N/P)) . Since the n u m b e r of

J.-H. Huang, L. Kleinrock /Distributedselectsort sorting algorithms 187

P1

P2

P3

P4

P1

P2

P3

P4

PI

P2

P3

P21
P3

253 253 253

9 259 9 259 9 259

14 14 187 --- 14 14 187 --- 14 14 187 ---

20 20 15 124 20 20 15 124 20 20 15 124

109 10 5 5 109 10 5 5 316 10 5 5

3 18I 5 4 3 181 5 4 14 326 5 4

3 9 130 4 3 9 262 4 20 20 262 4

9 14 10 64 9 14 20 184 20 20 20 184

109 & & & 208 5 10 5 282 16 10 5

& & & & 5 232 10 5 11 289 10 5

& & & & 12 12 205 9 17 17 271 9

& & & & i7 20 17 196 20 20 20 196

& & & & 202 8 6 5 282 & & &

& & & & 5 211 5 5 & & & &

& & & & & & 205 & & & & &

Fig. 2. The messages sent in Example 1. Each row represents a message.

messages r e q u i r e d by the a l g o r i t h m is b o u n d e d by P l g (N / P) , the to ta l c o m p u t a t i o n c o m p l e x -

i ty is O (P 3 • lg2(N/P)) . H o w e v e r , s ince all P p roces so r s w o r k c o n c u r r e n t l y at all t ime, h e n c e
the c o m p u t a t i o n t i m e c o m p l e x i t y is O (P 2- lg2(N/P)) . []

3 The distributed selectsort sorting algorithm

T h e a p p r o a c h of this so r t ing a l g o r i t h m is f irst to f ind the (i N / P) t h r a n k e d e l e m e n t s for all i

f r o m 1 to P - 1. W e de f ine these e l e m e n t s as the delimiters. Then , e l e m e n t s w i t h va lues

b e t w e e n the va lues of the (i - 1) th a n d the i t h de l imi t e r s wil l be sent to Pi fo r so r t ing by each

p r o c e s s o r to c o m p l e t e the a lgo r i thm. A c c o r d i n g l y , this a l g o r i t h m is p a r t i t i o n e d in to 4 s teps as

fol lows. N o t e tha t i f all P p rocesso r s can be w o r k i n g at the s a m e t ime in a s tep in the a lgo r i t hm,
we a d d concurrently in tha t step.

Algorithm
Step 1. F o r i = 1 to P do concurrently Pi sorts i ts loca l l ist us ing a k n o w n o p t i m a l s equen t i a l

so r t ing a l g o r i t h m (e.g. qu icksor t) .

S tep 2. F o r i = 1 to (P - 1) do concurrently f ind the (i N / P) t h e l e m e n t (i.e. the i t h de l imi t e r)

us ing the d i s t r i b u t e d c o n c u r r e n t se lec t ion a l g o r i t h m d e s c r i b e d in Sec t i on 2.

S tep 3. F o r i = 1 to P do sequen t i a l l y Pi b r o a d c a s t s all e l emen t s w h i c h s h o u l d be sent to o t h e r

p rocesso r s in a message . A t the s a m e t ime, Pj l i s tens to the b roadcas t s , and cop ies all

e l emen t s w i t h va lues b e t w e e n (j - 1) th and the j t h de l imi t e r s to its loca l list.

S tep 4. F o r i = 1 to P do concurrently Pi merges all the P subl is ts sent to it i n t o o n e so r t ed list.

T h e o r e m 1. The computation time complexity of the algorithm is O((N / P) lgN + p 21g 2 (N / P))
and the communication element complexity is O(N + P 3 l g (N I P)) .

188 J.-H. Huang, L. Kleinrock /Distributedselectsort sorting algorithms

Proof. The computational time complexity of Step 1 is O((N/P) lg(N/P)) for each processor
since the list in each processor has N / P elements. The computat ion time complexity and the
communication element complexity of Step 2 are provided in Lemmas 1 and 2. In Step 3, each
element will be broadcast at most once from the processor it initially resides to the processor it
should finally reside. Hence, the communication element complexity is at most N. The
computation time complexity of Step 3 is also O (N) to prepare the messages for all elements.
The computation time complexity of Step 4 is O((N/P) . lgP) for each processor since each
processor simply merges P sorted sublists such that the computat ion time complexity is
O((N/P) . lgP). []

Theorem 2. The communication message complexity of the sorting algorithm is O(Plg(N / P)).

Proof. We now find the number of messages required by Steps 2 and 3. Step 2 requires
O(P. lg(N/P)) messages as stated in Lemma 1. For Step 3, each processor broadcasts a
message containing all elements to be sent to other processors. Each processor extracts the part
of elements destined for it. Hence, Step 3 requires P messages. Therefore, the total number of
messages required by the algorithm is O(Plg(N / P) + P) = O(PIg(N/P)). []

One advantage of this algorithm is that in Steps 2 and 3 we can send multiple elements per
message. As mentioned in the Introduction, this reduces the communication processing time
significantly. Also note that all communication is well scheduled so that no collisions will occur
if the algorithm is applied on a multi-access broadcast channel. (A multi-access broadcast
channel is a broadcast communication channel which can be accessed by all stations. However,
a collision will occur if two or more stations transmit at the same time. The well known
Ethernet is an example of a multi-access broadcast channel.) Nevertheless, there are some
inefficiencies in Step 2 which will be improved in the following section.

4 The distributed parameterized selectsort sorting algorithm

In this section we make a slight change in Step two of the previous algorithm to obtain a
parameterized sorting algorithm which reduces the communication requirement dramatically
with a slight sacrifice in computation. Since communication is more expensive than computa-
tion, this modification gives us a big save. The most significant effect of this parameterized
algorithm is that the communication message complexity of Step 2 is no longer a function of N.
This makes our algorithm a very good algorithm for large N.

Step 2 is modified such that we do not have to find exactly the (iN/P)th element as the ith
delimiter. Rather, we accept any element whose ranking is between [i N / P - (N/P) . /£ /100]
and [i N / P + (N / P) . K / I O 0] as the i th delimiter for a chosen parameter K(O<~K4 50).
Hence, we choose the ith delimiter as the first element found in Step 2 with a ranking between
[iU/P - (N / P) . K/100] and [iU/P + (N / P) . K/100] for I ~< i ~< P - 1.

Algorithm
Step 1. For i = 1 to P do concurrently Pg sorts its list using a known optimal sequential sorting

algorithm.
Step 2. Select a value between 0 and 50 for ' K ', for i = I to (P - 1) do concurrently find the

first element with a ranking between [i N / P - (N/P) . /£ /100] and [iN/P + (N / P) .
/£/100] as the i th delimiter using the distributed concurrent selection algorithm.

Step 3. For i = 1 to P do sequentially Pi broadcasts all elements which should be sent to other
processors in a message. At the same time, Pj listens to the broadcasts, and copies all
elements with values between the (j - 1)th and the j t h delimiters to its local list.

Step 4. For i = 1 to P do concurrently Pg merges all the sublists sent to it into one sorted list.

J.-H. Huango L. Kleinrock /Distributedselectsort sorting algorithms 189

Lemma 3. The number of runs required in Step 2 of the parameter&ed algorithm is upper bounded
by lg50/K.

Proof. We can group the N elements into 1 0 0 / 2 K groups where each group contains
N- 2K/100 elements. Whenever the algorithm finds any of the elements in a group containing
the element with the (iN/P) th ranking, this element is regarded as the ith delimiter. Hence,
using binary searching on these 1 0 0 / 2 K groups, the number of searches is upper bounded by
lg50/K. []

Lemma 4. The communication element complexity of Step 2 of the parameterized algorithm is
O(p3).

Proof. Since each run contains P messages and each message contains p2 elements and the
number of runs is upper bounded by lg50/K; hence, the communication element complexity is
O(p3). []

Lemma 5. The computation complexity of Step 2 is O(P21g(N/P)) .

Proof. This proof follows directly from Lemmas 2 and 3. []

Note that the communication message complexity and the communication element complex-
ity are independent of N; hence the communication processing time can be greatly reduced for
large N. However, by this saving in communication, we also incur more computation in Step 4.
In Step 4, all processors no longer contain the same number of elements to be sorted as in the
original algorithm. Nonetheless, the maximum number of elements to be sorted given to a
processor is at most (1 + 2/£/100) N/P . Therefore, the computation time required for Step 4 is
at most 2K% more than the original algorithm. Moreover, the memory requirement will also be
increased to store these elements. However, the computation time complexity remains un-
changed since K is a constant. Furthermore, note that the increase in computation time
complexity in Step 4 is dominated by the computation time complexity in Step 1. Hence, this
increase in computation in Step 4 has no effect on the overall computation time complexity.

Another advantage of this modification is that by adjusting the value of K, we are able to
trade between communication requirement and computation and memory requirement. A
larger K will incur less communication and more computation and memory than a smaller K.
Moreover, by taking a system configuration (e.g. computational power, communication band-
width, etc.) into consideration, we can balance the computation requirement and communica-
tion requirement by adjusting the value of K.

Theorem 3. The computation time complexity of the parameterized algorithm is O((N / P)lgN +
p21g(N / P)) and the communication element complexity is O(N + p3).

Proof. The proof can easily be derived from Theorem 1 and Lemmas 4 and 5. []

Corollary 1. / f N > p3, then the computation time complexity is O((N /P) IgN) and the
communication element complexity is O(N). Both are optimal.

Theorem 4. The communication message complexity of the parameterized algorithm is O(P).

Proof. We now find the number of messages required by Steps 2 and 3. Step 2 requires
O(Plg(IOO/K)) = O(P) messages. As explained in the proof of Theorem 2, the number of

190 J.-H. Huang, L. Kleinrock / Distributed selectsort sorting algorithms

messages required by Step 3 is at most P. Therefore, the total number of messages required by
the algorithm is O(P). []

5 Conclusions

The contribution of the parameterized selectsort sorting algorithm is that the number of
messages sent during the algorithm depends only on P and not on N. This will significantly
reduce the communication processing time in a broadcast network when N is large. Addition-
ally, we show that when N >~ p3, the computation time complexity is O((NlgN)/P), which is
optimal with P processors. More importantly, in the parameterized algorithm, we provide a
parameterized way to trade-off among communication requirement, processing requirement,
and memory requirement. This allows the algorithm to be fine-tuned under various system
configurations.

References

[1] R. Dechter and L. Kleinrock, Broadcast communications and distributed algorithms, IEEE Trans. Comput. C-36
(3) (March 1986) 210-219.

[2] J. Marberg, Distributed algorithms for multi-channel broadcast networks, Ph.D. dissertation, Computer Science
Department, UCLA, 1986.

[3] D. Rotem, N. Santoro and J.B. Sidney, Distributed sorting, IEEE Trans. Comput. C-34 (4) (April 1985) 372-376.
[4] L.M. Wegner, Sorting a distributed file in a network, in: Proc. 1982 Conf. Information Sci. Systems, Princeton,

New Jersey (March 1982) 505-509.
[5] S. Zaks, Optimal distributed algorithms for sorting and ranking, IEEE Trans. Comput. C-34 (4) (April 1985)

376-379.
[6] S.P. Levitan, Algorithms for a broadcast protocol multiprocessor, in: Proc. 3rd Internat. Conf. on Distributed

Computing Systems, (1982) 666-671.
[7] K.V.S. Ramarao, Distributed sorting on local area networks, IEEE Trans. Comput. 37 (2) (Feb. 1988) 239-243.
[8] J. Marberg and E. Gafni, An optimal shout-echo algorithm for selection in distributed sets, in: Proc. 23rd Ann.

Allerton Conf. on Communication, Control, and Computing Univ. of Illinois at Urbana Champaign (1985) 283-291.
[9] D. Rotem, N. Santoro and J.B. Sidney, A shout-echo algorithm for finding the median of a distributed set, in:

Proc. 14th S.E. Conf. on Combinatorics, Graph Theory and Computing. Boca Raton, FL (1983) 311-318.
[10] N. Santoro and J.B. Sidney, A reduction technique for distributed selection: I, Tech. Rep. SCS-TR-23, School of

Computer Science, Carleton Univ., Ottawa, Canada, 1983.

